Special Session Ⅰ

Fusion Innovation of Collaborative Perception and Large Models in Intelligent Transportation

协同感知与大模型在智慧交通中的融合创新



Chair:

Co-chairs:


Jianqing Wu

Mengmeng Zhang

Yuan Tian

Shandong University, China

Shandong Jiaotong University

Shandong University, China 


Keywords:

Topics:

· Collaborative Perception

     (协同感知)

· Large-Scale Models

     (大模型)

· Vehicle-Road Collaboration

     (车路协同)

· Multi-Source Data Fusion

     (多源数据融合)

· Intelligent O&M

     (智能运维)

· Vehicle-Road Collaborative Perception

     (车路协同信息感知)

· Multi-Source Traffic Data Fusion

     (多源交通数据融合)

· Intelligent Traffic Conflict Management

     (交通冲突智能管理)

· Generative AI for Traffic Simulation

     (生成式AI在交通仿真中的应用)

· Architecting & Fine-Tuning Traffic Foundation Models

     (交通大模型构建与微调)

· Real-Time Decision Optimization via Large AI Models

     (大模型驱动的实时决策优化)

· Performance Evaluation of Green Intelligent Transportation Systems

     (绿色智能交通效能评估)

· Intelligent Detection of Structural Diseases in Transport Infrastructure

     (交通基础设施病害智能检测)


Summary:

· In recent years, collaborative perception and large AI models have reshaped smart transportation through groundbreaking innovations in both theory and practice. Advances in multi-sensor fusion and data-driven operation, accelerated by national funding (e.g., MOT, NSFC), position China at the global forefront.

To capture these developments, we present: "Fusion Innovation of Collaborative Perception and Large Models in Smart Transportation".

This session will:

Review advances in vehicle-road collaborative sensing and large-model-based decision systems;

Analyze frontiers: from multi-source data fusion to generative AI for traffic optimization;

Forecast next-gen trends for AI-native transportation ecosystems.


· 近年来,协同感知与AI大模型技术正在重塑智慧交通领域,推动理论与工程实践的革命性突破。 在人工智能背景下,多源信息融合理论与数据驱动型交通运维范式快速发展。依托交通运输部、国家自然科学基金委等国家级项目支持,我国在智能交通领域取得系列前沿成果,确立了全球技术引领地位。

为系统总结上述进展,特设立专题:《协同感知与大模型在智慧交通中的融合创新》

本专题旨在:

梳理协同感知与大模型决策系统的理论突破;

解析车路协同感知、多模态数据融合、基础设施智能诊断等前沿成果;

展望大模型赋能的下一代智慧交通系统发展趋势。


Submission Deadline: 2025/8/30


Copyright ©www.cstfm.org 2025-2026 All Rights Reserved.